
University of California, Berkeley
Physics 110B, Fall 2004 (Strovink)

PROBLEM SET 13
Due at 5 PM on Wednesday, December 1, 2004

Problems 66-72 develop scalar diffraction theory and apply it to Fraunhofer diffraction, which reduces
to a Fourier transform.

66. Green’s theorem.
Denote by �G a vector field, and start from the
divergence theorem

∫
∇ · �Gdτ =

∮
�G · n̂ da ,

where n̂ is the (outward) direction of the surface
area element d�a, and the left-hand integral ex-
tends over the volume enclosed by the right-hand
surface.
(a.)
Substituting �G = V∇U , where V and U are
scalar fields, show that

∫(∇V · ∇U + V∇2U
)
dτ =

∮
V
∂U

∂n
da .

(b.)
Show that
∫(
V∇2U − U∇2V

)
dτ =

∮ (
V
∂U

∂n
− U ∂V

∂n

)
da .

(c.)
If V and U both satisfy the scalar Helmholtz
equation,

(∇2 + k2
)
(U, V ) = 0 ,

where k is a constant, show that

0 =
∮ (
V
∂U

∂n
− U ∂V

∂n

)
da .

This is Green’s theorem for solutions to the
scalar Helmholtz equation.

67. Fresnel-Kirchoff integral theorem.
Please use the notation and results of the previ-
ous problem.

(a.)
Consider a closed surface consisting of an inner
sphere of radius R, centered at the origin, and
an arbitrary closed outer surface A. Apply the
result of part (c.) to the combined surface. Take
V to be an inward-propagating spherical wave

V = V0
ei(kr+ωt)

r
.

In the limit R→ 0, show that

U(0) = 1
4π

∮ (eikr

r

∂U

∂n
− U ∂

∂n

(eikr

r

))
da ,

where the integral is taken only over A. This is
the Kirchoff integral theorem.
(b.)
Now punch a hole (“aperture”) in A. Place a
point source S outside A; the origin (now called
“observation point P”) still lies inside A. The
source radiates an outward-propagating scalar
spherical wave

U = U0
ei(kr′−ωt)

r′
,

where �r ′ is a vector from S to a point in space.
Using the result of (a.), assume that the opac-
ity of the remainder of A allows the integral to
be carried out over only the aperture (“ap”). In
the far zone limit kr′, kr � 1, show that

UP =
−ikU0e

−iωt

4π

∫
ap

eik(r+r′)

rr′
(
r̂ · n̂− r̂′ · n̂) da ,

where �r (�r′) is a vector from P (point S) to a
point on the element of aperture da, and n̂ is
the (outward from P ) normal to da. This is the
Fresnel-Kirchoff integral theorem; it is the start-
ing point for the study of diffraction in the scalar
field approximation.
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68. Knife-edge diffraction.
A plane wave of initial irradiance I0 propa-
gating along ẑ is incident upon a semi-infinite
totally absorbing screen lying in the z = 0 plane.
The screen extends from −∞ < x < ∞ and
−∞ < y < 0. An observer stationed at (0, 0, z),
where kz � 1, detects an irradiance I ′. What is
I ′/I0, and why?

69. Fourier diffraction.
The convolution of two functions f(x) and g(x),
denoted by (f ⊗ g)(x), is defined by

f ⊗ g ≡
∫ ∞

−∞
dx′ f(x′) g(x− x′) .

Define the Fourier transform Fµ

(
g(x)

)
by

Fµ

(
g(x)

) ≡
∫ ∞

−∞
dx g(x) e−iµx .

(a.)
As a warmup, prove that

f ⊗ g = g ⊗ f .

(b.)
For use in part (d.), prove that

Fµ

(
f(x)⊗ g(x)) = Fµ

(
f(x)

)Fµ

(
g(x)

)
.

(c.)
If f(x) is the aperture function for a pair of thin
slits separated by d,

f(x) ∝ δ(x− d
2 ) + δ(x+

d
2 ) ,

and if g(x) is the aperture function of a single
slit of thickness a,

g(x) ∝ θ(x+ a
2 )− θ(x− a

2 ) ,

show that f ⊗ g is the aperture function corre-
sponding to two slits of thickness a, separated
(centerline-to-centerline) by d.
(d.)
In the Fraunhofer approximation, where �r ′ and
�r (cf. Problem 67) are paraxial and the wave-
front curvature across the aperture is negligible,
the scalar “optical disturbance” amplitude is

UP (µ, ν) ∝
∫ ∞

−∞
dx

∫ ∞

−∞
dy g(x, y)e−i(µx+νy) ,

where UP is measured at the transform plane
(X,Y ), the aperture function g is measured at
the aperture plane (x, y), µ and ν are defined by

µ ≡ kX

f
ν ≡ kY

f
,

and f is the focal length of the thin field lens lo-
cated an equidistance f from the aperture and
transform planes. Write down the diffraction
pattern

IN (ψx, ψy)
I1(0, 0)

for N slits of center-to-center separation ∆x = d
and thicknesses δx = a and δy = b, where

(sin)ψx ≡ X

f

(sin)ψy ≡ Y

f
.

You may use the fact – directly obtainable by
applying the Fourier transform – that

IN (ψx)
I1(0)

= N2 sin2
(

Nkd
2 sinψx

)
(
N sin (kd

2 sinψx)
)2

for N thin slits of infinite length and separation
d, and that

I(ψx)
I(0)

= sinc2
(

ka
2 sinψx

)

for a single slit of infinite length and thickness a.
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70. Quadruple slit.
Consider four equally spaced long (∆y = ∞)
thin slits, located at x = ±d

2 and x = ±3d
2 . As

usual, tanψx = dx
dz of the outgoing wavefront.

(a.)
Write down the standard result

R(ψx) ≡ I(ψx)
I(ψx = 0)

for the Fraunhofer diffraction pattern from N =
4 equally spaced thin slits.
(b.)
Consider the full diffracted amplitude to be the
superposition of the diffracted amplitudes from
a pair of slits at x = ±d

2 and a pair of slits
at x = ± 3d

2 . Write down R(ψx) as a quantity
proportional to the modulus2 of the sum of the
diffracted amplitudes from the two pairs of slits.
(c.)
Consider the aperture function for these four
slits to be the convolution of a pair of δ-functions
separated by d and another pair of δ-functions
separated by 2d (both pairs are symmetric about
x = 0). Write down R(ψx) as the product of
two two-slit R’s.
(d.)
Are your answers to parts (a.), (b.), and (c.)
equivalent? Why or why not?

71. Fuzzy thick slit.
Please use the notation and results of the pre-
vious problem. Consider a trapezoidal aperture
function

g(x) = 1 |x| < a
2

= 0 |x| > a
= 2

a (x+ a) − a < x < −a
2

= 2
a (a− x) a

2 < x < a .

Fraunhofer conditions apply. Under these condi-
tions, calculate the slit’s diffraction pattern

R(ψx) ≡ I(ψx)
I(ψx = 0)

.

72. Thick slits with wave plates.
A linearly (x̂) polarized plane EM wave traveling
along ẑ is incident on an opaque baffle located
in the plane z = 0. The baffle has two slits cut
in it, which are of infinite extent in the ŷ di-
rection. In the x̂ direction, the slit widths are
each a and their center-to-center distance is d.
(Obviously d > a, but you may not assume that
d � a.) The top and bottom slits are each an
equal distance from x = 0.

The diffracted image is viewed on a screen lo-
cated in the plane z = L, where L � d; also
λL� d2, where λ is the EM wavelength.

Quarter-wave plates are placed in each slit. They
are identical, except that the top plate’s “slow”
(high-index) axis is along (x̂+ ŷ)/

√
2 (+45◦ with

respect to the x̂ axis), while the bottom plate’s
slow axis is along (x̂− ŷ)/√2 (−45◦ with respect
to the x̂ axis).
(a.)
What is the state of polarization of the diffracted
light that hits the center of the screen, at
x = y = 0? Explain.
(b.)
At what diffracted angle ψx does the first mini-
mum of the irradiance occur?
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